[Mat10] BME Optimalizálás Szeminárium
Csilla Majoros
majoroscsilla88 at gmail.com
2015. Már. 20., P, 11:03:46 CET
*MeghĂvĂł*
Szeretettel várunk minden kedves érdeklődőt a BME
Optimalizálás Szemináriumán!
Az előadás részletei:
*március 26. (csütörtök), 14.15, H306*
*Mirjam DĂĽr*
* (University of Trier):*Copositive Programming
*Abstract:*
Copositive programming can be seen as a generalization of semidefinite
programming, since it means optimizing over the cone of so called
copositive matrices. A matrix is called copositive if its quadratic form
takes nonnegative values on the nonnegative orthant. Obviously, every
positive semidefinite matrix is copositive, and so is every entrywise
nonnegative matrix, but the copositive cone is significantly larger than
both the semidefinite and the nonnegative matrix cones.
Similar to SDP, copositive programs play a role in combinatorial and
quadratic optimization. In contrast to SDP, however, in many cases
copositive programs provide exact reformulations rather than relaxations.
This fact has led to new approaches to combinatorial problems like max
clique, QAP, graph partitioning, and graph coloring problems, as well as to
certain nonconvex quadratic problems.
The talk will give an introduction to this rather young field of research.
We will discuss properties of the copositive cone and its dual, the so
called completely positive cone. We will give an overview on problem
classes that can be treated as copositive problems, and discuss various
solution approaches to solve copositive programs.
http://www.math.bme.hu/diffe/szeminarium/opt.shtml
Üdvözlettel,
Majoros Csilla
--------- következő rész ---------
Egy csatolt HTML állomány át lett konvertálva...
URL: http://lists.math.bme.hu/pipermail/mat10/attachments/20150320/a521dc0c/attachment.htm
More information about the Mat10
mailing list