<div dir="ltr"><div dir="ltr"><div style="text-align:center"><span style="background-color:rgb(255,255,255)"><font size="4"><b>Meghívó</b></font><br></span></div><span style="background-color:rgb(255,255,255)"><font size="4"><br></font></span><div style="text-align:left"><div style="text-align:center"><span style="background-color:rgb(255,255,255)"><font>Szeretettel várunk minden</font> kedves érdeklődőt a BME<br>Optimalizálás Szemináriumán!<br></span></div><span style="background-color:rgb(255,255,255)"><br></span></div><div style="text-align:left"><span style="background-color:rgb(255,255,255)"><br>Az előadás részletei:<br><br></span></div><div style="text-align:left"><span style="background-color:rgb(255,255,255)"><span style="font-family:arial,helvetica,sans-serif"><i><b>március 26. (csütörtök), 14.15, H306</b></i><br></span></span></div><div style="text-align:left"><span style="background-color:rgb(255,255,255)"><span style="font-family:arial,helvetica,sans-serif"><br></span></span></div><div style="text-align:left"><span style="background-color:rgb(255,255,255)"><span style="font-family:arial,helvetica,sans-serif"><i><b>Mirjam Dür</b></i></span></span><span style="background-color:rgb(255,255,255)"><span style="font-family:arial,helvetica,sans-serif"><i><b> (University of Trier):<br></b></i><span style="font-size:13px;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"></span></span></span><span style="background-color:rgb(255,255,255)"><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:13px;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"><span style="background-color:rgb(255,255,255)"><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:13px;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">Copositive Programming</span><b><span style="font-size:13px;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"><br></span></b></span></span></span><b><span style="font-size:13px;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"><br></span></b><i><b><span style="font-size:13px;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"></span></b></i></span></span><span style="background-color:rgb(255,255,255)"><span style="font-family:arial,helvetica,sans-serif"><i><b><span style="font-size:13px;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"><i><b>Abstract:</b></i></span></b></i></span></span><br></div>Copositive programming can be seen as a generalization of semidefinite
programming, since it means optimizing over the cone of so called
copositive matrices. A matrix is called copositive if its quadratic form
takes nonnegative values on the nonnegative orthant. Obviously, every
positive semidefinite matrix is copositive, and so is every entrywise
nonnegative matrix, but the copositive cone is significantly larger than
both the semidefinite and the nonnegative matrix cones.<br><br>Similar
to SDP, copositive programs play a role in combinatorial and quadratic
optimization. In contrast to SDP, however, in many cases copositive
programs provide exact reformulations rather than relaxations. This fact
has led to new approaches to combinatorial problems like max clique,
QAP, graph partitioning, and graph coloring problems, as well as to
certain nonconvex quadratic problems.<br><br>The talk will give an
introduction to this rather young field of research. We will discuss
properties of the copositive cone and its dual, the so called completely
positive cone. We will give an overview on problem classes that can be
treated as copositive problems, and discuss various solution approaches
to solve copositive programs.<span><span style="text-align:justify"><font face="arial, helvetica, sans-serif"><br><br><br><a href="http://www.math.bme.hu/diffe/szeminarium/opt.shtml" target="_blank">http://www.math.bme.hu/diffe/szeminarium/opt.shtml</a><br><br>Üdvözlettel,<br><br>Majoros Csilla</font></span></span></div></div>