<div dir="ltr"><div><div style="font-size:12.8px;text-align:center"><font size="4"><b>Meghívó</b></font><br></div><div style="text-align:center"><br>Szeretettel várunk minden kedves érdeklődőt<br><br><b>Julius Zilinskas </b><br>(Vilnius University)<br><br>professzor úr <b><i>Globális
      Optimalizálás</i></b> mini kurzussorozatán.<br><br><div style="text-align:left"><br></div><div style="text-align:left"><b>1. előadás</b><br></div></div>2015. december 15-én kedden 10:00 - 11:00, BME H. épület IV. em, H45/a terem<br>
    Az előadás címe: <b><i>Global Optimization</i></b><br>
    <br>
    <b><i>Abstract:</i></b> Global optimization aims at minimization of
    a nonlinear objective function when no assumptions on unimodality 
    are included into formulation of the problem - many local minima may
    exist. We will start this mini-course from introduction to global
    optimization and discussion of deterministic covering methods
    partitioning the feasible region.
    <br>
    <br></div><b>2. előadás</b><br><div>
    2015. december 15-én kedden 14:00 - 15:00, BME H. épület IV. em.
    H45/a terem<br>
    Az előadás címe: <b><i>Simplicial Global Optimization<br>
        <br>
      </i></b><b><i>Abstract:</i></b> Although rectangular partitions
    are used most often in global optimization, in this lecture we will
    particularly discuss simplicial covering which has several
    advantages. Applications benefiting from simplicial partitioning are
    examined in detail: nonlinear least squares regression and pile
    placement in grillage-type foundations.
    <br>
    <br></div><div><b>3. előadás</b><br></div><div>
    2015. december 16-án szerdán 14:00 - 16:00, BME H. épület III. em.
    H306 terem<br>
    Az előadás címe: <b><i>Optimization Based Visualization of
        Multidimensional Data</i></b><b><i><br>
      </i></b><br>
    <b><i>Abstract:</i></b> The next lecture will focus on optimization
    based visualization of multidimensional data. Multidimensional data
    visualization enables exploratory data analysis involving heuristic
    abilities of human experts when a set of objects is represented in a
    low-dimensional space. In this lecture we consider one of the most
    popular approaches known as multidimensional scaling, whose
    essential part is optimization of a function possessing many
    optimization adverse properties. Application areas of
    multidimensional scaling vary from psychometrics to pharmacology.
    <br>
    <br>
    2015. december 17-én csütörtökön 14:00 - 16:00, BME H. épület III.
    em. H306 terem<br>
    Az előadás címe: <b><i>Non-convex Multi-objective Optimization</i></b><br>
    <br></div><div><b>4. előadás</b><br></div><div>
    <b><i>Abstract:</i></b> Real-world optimization problems usually
    involve more than one criteria, what leads to solution of
    multi-objective optimization problems. Multi-objective optimization
    discussed in this lecture is a research area rich with various
    approaches. Many methods convert the multi-objective optimization
    problem into a set of single-objective problems. Apart from general
    disadvantages of such approaches, in non-convex multi-objective
    <br>
    optimization even the scalarized single-objective optimization
    problem is not easily solved - global
    <br>
    optimization must be used. As we saw in previous lectures, branch
    and bound method can be used to solve global optimization problems,
    and moreover it is possible to develop multi-objective branch and
    bound algorithms which do not require scalarization of the problems.
    In non-convex continuous multi-objective optimization such a
    multi-objective branch and bound algorithm can find close
    approximation of the Pareto front with predefined accuracy and in
    discrete multi-objective optimization the exact Pareto-optimal set
    can be found.
    <br>
    <br>
    Literature:
    <br>
    R. Paulavičius, J. Žilinskas (2014) Simplicial Global Optimization.
    Springer, ISBN 978-1-4614-9092-0. doi:10.1007/978-1-4614-9093-7.
    [Abstracted/Indexed in ISI Web of Science (Book Citation Index),
    SpringerLink, MathSciNet. Preview at Amazon.com, Google Books].
    <br>
    G. Dzemyda, O. Kurasova, J. Žilinskas (2013) Multidimensional Data
    Visualization: Methods and Applications. Springer, ISBN
    978-1-4419-0235-1. doi:10.1007/978-1-4419-0236-8.
    [Abstracted/Indexed in SpringerLink, MathSciNet. Preview at
    Amazon.com, Google Books].<br><br><br></div><div>Üdvözlettel,<br><br></div><div>Majoros Csilla<br>
    </div></div>