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Abstract. Let Q be a convex solid in R”, partitioned mto two volumes u and t’ by an area s. We show 
that s > min(u, o)/diam Q, and use this inequality to obtain the lower bound n -‘/’ on the conductance 
of order Markov chains, which describe nearly uniform generators of linear extensions for posets of size 
n. We also discuss an applicatron of the above results to the problem of sorting of posets. 
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1. Isoperimetric Inequality on Partitions of Convex Bodies and a Lower 
Bound on the Conductance of Order Markov Chains 

Let A = (1,. . . , n; <I be a poset with n elements, and let E = E(A) be the set of 
linear extensions of A, i.e. the set of all total linear orders 

e=(e(l)<e(2)4 ... <e(k)<e(k+l)< . ..e(n)} (1.1) 
compatible with the partial order < on A. Thus, each linear extension e E E can be 
viewed as a permutation (1.1) of elements 1, . _ , , n. Two linear extensions e, g E E 
are said to be neighbors in E, if g can be obtained by a single transposition of two 
consecutive elements in e, i.e. if 

g={e(l)<e(2)< ... <e(k+l)<e(k)< ... <e(n)} 
for some k E [ 1, H - 11. In particular, the number n(e) of neighbors of e in E is at 
most n - 1. 

Given a poset A, consider the order Markoz) chain M of A with states e E E, and 
with transition probabilities 

i 

1/(2n - 2) if e and g are neighbors in E 
p(e,g) = 1 -n(e)/(2n -2) if e =g (1.2) 

0 otherwise. 

* On leave from Computing Center of the USSR Academy of Sciences. 
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Geometrically, we consider the canonical triangulation 

Q = u Q(e), e E E (1.3) 

of the order polytope of A 

Q=(x~[W”IO~x,~l,i=l,...,n;x~dx,ifiijinA} 

into the simplices 

(1.4) 

Q(e) = (x E ~8” IO < x,(,) < x,(,) < . . . < x,(,) < l}, (1.5) 

corresponding to linear extensions e of A, see, e.g., [ 1 I]. The order Markov chain 
(I .2) describes a random walk through the simplices in the triangulation (1.3), or 
equivalently through the set E of linear extensions of A. This random walk starts at 
an arbitrary simplex Q(eo) in the triangulation. At the t-th step, t = 0, 1, . . . , we 
choose with probability 1/(2n - 2) one of n - 1 facets 

F&9 = Q(e) n ix E R” I x,(k) = x,(k+ 1) 1, k E [L n - 11 (1.6) 

of the current simplex Q(e) = Q(e,). If the adjacent simplex Q(g), sharing the 
chosen facet F,(e) with Q(e), belongs to the triangulation, we move to this sim- 
plex Q(e,+ i) = Q(g), otherwise the random walk stays at the present simplex 
Qk + l > = Q(e). 

The above construction is similar to the one considered in [4], and it is easy to 
see that ( 1.2) is an ergodic time-reversible Markov chain with uniform stationary 
distribution. In other words, for an arbitrary poset A and an arbitrary initial 
probability distribution ~(0, e), e E E on the set of linear extensions of A, the 
distribution after t steps of the random walk 

$t,e)= 2 n(t-l,glp(g,e), t=l,&..., 
&!eE 

converges to the uniform distribution on E: 

lim n(t, e) = l/(El, Ve E E. 
,-CC 

Thus, for an arbitrary A and sufficiently large T = TA the following algorithm, 
RandWalk, gives a nearly uniform generator of linear extensions of the poset. 

Input A, T; 
{topological sorting} find a linear extension e = {e( 1) < . . . <e(n)} of A; 
{random walk} for t = 1, . . . , T do: 

begin 
choose at random an integer k E [ 1, . . . ,2n - 21; 
if k d n - 1 and not e(k) <e(k + 1) in A, then 

swap e(k) and e(k + 1) in e 
end; 

Outnut e 
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The complexity of RandWalk is O(n2 + T) operations plus T times the complexity 
of (pseudo) random uniform generation of k E [ 1,2n - 21. 

The rate of convergence of RandWalk can be estimated using the following 
inequality of Sinclair and Jerrum [9, lo]: for any initial distribution, 

ln(t, e) - l/l,!? 1 d (1 - c1’)‘, Ve E E. (1.7) 
Here M is the conductance of the Markov chain (1.2) defined as 

CI = & min{C(X)/(XI 1 X c E, 1 d 1x1 Q ]E)/2}, (1.8) 

where 

C(X) is the capacity of the cut (X, E - X), (1.9) 
i.e. the number of pairs e E X, g E E - X such that e and g are neighbors in E. 

THEOREM 1. Let A4 be the order Markov chain ( 1.2) of a poset with n elements. 
Then 

@ = a(M) > 2p34g -5/2. (1.10) 

Remark 1. If A contains a chain of n - 1 elements and a singleton, then 
c1 = ((2n - 2)Ln/2_1) -’ z n -2. We believe that the lower bound (1.10) can be 
improved by a factor of n”.5. 

Theorem 1 is a simple corollary of a more general isoperimetric inequality indepen- 
dently obtained in [7] and [ 81. 

THEOREM 2. Let Q be a convex n-dimensional solid. Suppose that Q is partitioned 
into two subsets U and V by an n - l-dimensional surface S = dU - aQ = 8 V - aQ 
of area s = vol,, _ 1 S. Then 

s > min(u, v)/diam Q, 

where u = 2’01, U and v = vol,, V. 

(1.11) 

Proof. For any E > 0 there exists a convex solid Q, c Q with a smooth boundary, 
such that ooZ,(Q -Q,) -CC. If (1.11) holds for Q, and .s+O, we get (1.11) for Q. 
Therefore we may assume without loss of generality that the boundary of the 
original body Q is smooth. 

Let us fix two positive numbers u and 11, whose sum is the volume of Q, and 
consider Plateau’s problem: 

minimize 2101, ~ , S, 

where S is an (n - 1)-dimensional surface, (1.12) 
partitioning Q into volumes u and v. 

The proof utilizes some known properties of extremal surfaces (( 1.13), ( 1.14) and 
( 1.16)), briefly reviewed below. 
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Fig. 1. 

Suppose at first that there exists a smooth surface S, extremal to the problem (1.12). 
Then 

S is transzrersal to the boundary of Q. (1.13) 

The convexity of Q and ( 1 .13) imply that 

for any point y E int Q - S there exists a regular point x E Snint Q, 
closest to y on the surface: I[y - x 11 = dist( y, S). 

(1.14) 

Remark 2. If the transversality condition ( 1.13) is violated, then for some points 
y E int Q - S all the closest points on the surface may lie on cYQ (see Figure 1). 

. 
In general, the extremal partitioning surface S possibly may have a closed singular 
set. However, it is known [ 11 that any point on S. closest to a point not on S, is 
regular (analytic). Therefore ( 1.14) holds for the general case. 

Let 6(x) be a smooth vector field, vanishing outside of a small regular disc on 
S n int Q, and let S’ be the surface, obtained by means of displacement of each 
point x in the disc by the vector M(x), where II is a scalar. Then for small il the 
variations of the volumes u and P are given by the surface integrals 

6u = -60 = 1 
s 

(W, 44 > ds, + W’), 
S 

where n(?c) is the outside normal vector to U at X, and ( , ) stands for the inner 
product. Next, the variation of the area s of the boundary is given by (see, e.g., [3]) 

6s = 2 
s 

(d(x), n(x))h(x) ds, + O(A’), 
S 

where 

(1.15) 

and R,(x), i=l,. . . , n - 1 are the radii of curvature of the U-side of S at x (we put 
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l/co = 0). Since S is extremal to the problem (1.12), we get the following well- 
known condition (see, e.g., [ 31): 

at any regular point x E S n int Q of the extremal surface, the mean 

curvature ( 1.15) of the U-side of S is constant: h(x) = H. 
(1.16) 

Of course, (1.16) also holds for the V-side of S with the mean curvature -H. 
Let J’ E [w” - S, and let x E S n int Q be a regular point closest to y on S. Clearly, 

this implies that 

y - x is perpendicular to S at x, and 
p=~~~-~xj~~p(x)=min{R,(x)~i=1,...,n-1:R,(x)~O,R,(x)#oo}, (1.17) 

where R,(x) are the radii of curvature of the y-side of S at x. 

[If all n - 1 radii of curvature are either negative or equal to co, we put 
p(x) = + cn.1 

If a point y E DB” - S and a regular point x E S n int Q satisfy ( 1.17), we say that 
)’ is visible from the corresponding side of S at distance p. As we know from (1.14), 
all the interior points of U (of V) are visible from the U-side (from the V-side) of 
S at distance p < diam Q. Note that some of the visible points may lie outside 
of Q. 

Let ds, be an elementary area of the extremal surface at a regular point 
x E S n int Q, and let ds,[p] be the corresponding elementary area, visible from the 
U-side of ds, at distance p. By (1.17) 

ds,bl = ds,Wr,‘(l -p/R,(x)) ifp <p(x) o if P > P(X), 
where R,(x) are the radii of curvature of the U-side of S at X. Since 
1 -r <exp(-r), we get for all p 30 

Wd < ds, exp = ds, exp( -PHI, (1.18) 

(see (1.16)). Recalling that all the interior points of U are visible from the U-side 
of S at distance p ,< diam Q, we obtain from ( 1.18) the following upper bound: 

u = vol, u < 

HS 

dlam Q 

exp( --pH) dp 
s 0 1 s 

dlam Q 

ds, = s exp( -HO dp. 
0 

IfH~O,whaveu~sdiamQand(1.11)follows.IfH~O,wehavev~sdiamQ 
and again obtain ( 1.11). 0 

Remark 3. Let Q be a cylinder of height h, and let S be the middle hyperplane 
parallel to the base of Q. Then s/min(u, v> = 2/h + Z/diam Q for h -+ co. 

Now we can nrove Theorem 1. 



12 ALEXANDER KARZANOV AND LEONID KHACHIYAN 

Proof. Let A be an arbitrary poset with IEl> 1 linear extensions, and let X be a 
subset of E of cardinality 1 < 1X1< IE//2. C onsider the corresponding partition 

u = iJ Q(e), v = iJ Q(e) PCX eeE--X 

of the order polytope Q of A, see (1.3) -( 1.5). Clearly, 

Furthermore, since 

~01,~ ,F,(e) = 2”‘/(n - I)! 

for each facet ( 1.6), we have 

s = vol, _, S = C(X)2”‘/(n - l)!, 

where S is the common boundary of U and V, and C(X) is the capacity of the cut 
(see ( 1.9)). Hence 

1 cw> 1 s > 2-312n -2 s 

2n - 2 m = (2n - 2)2’j2n min(z.4, 211 min{ u, v} 
by (1.11) > 2-3’2n-z/diam Q = 223/2n p5j2, 

and we obtain (1 .lO), from the definition (1.8) of a. 0 

By (1.7) and (1.10) the number T of steps of the algorithm RandWalk, sufficient to 
generate linear extensions of a given poset A uniformly to a given relative accuracy 
v E (0, 1) 

(n(T, e) - l/(E( 1 d v/(E(, Ve E E (1.19) 

can be bounded as 

Thus, for reasonable v, say v = 0.01, one has 

T = O(n’ log[El). 

We expect that these bounds can be improved by at least a factor of n. 

2. An Application to the Problem of Sorting of Posets 

Suppose that we wish to sort a given poset A with IE(A)I > 1 linear extensions by 
querying an oracle. Namely suppose that we can choose any pair i, j E ( 1, . . . , n > of 
incomparable elements in A and ask the oracle to compare them. Having gotten the 
answer, say i precedes j, we add the relation i <j and all its transitive consequences 
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to A and obtain a new partial order A ’ = A&[i <j] on the same set (1, . . . , n> of 
elements. If IE(A ‘)I > 1, we call the oracle again, ask it to compare a new pair of 
element, obtain a new partial order A2 and so on. 

Thus, in a finite number q of queries we sort the original poset A, i.e. obtain a 
total linear order A4 = e E E(A) on (1, . . . , n}. Clearly, one has the following 
well-known information theory worst-case lower bound 

4 3 log2 I%4 I (2.1) 

on the number of queries. In 1976 Fredman [5] made the following conjecture: 

For any poset A fiith IE(A)\ > 1 I inear extensions there exists a pair of elements 
i,j E { 1, . . . , n} such that 

(2.2) 

with /3 = 213. 
The inequality (2.2) says that in any poset A there exists a P-balanced comparison 
i, j which decreases the number of linear extensions by at least 8. 

At the present the original conjecture (2.2) with b = 213 remains open. However, 
it is known [6] that (2.2) holds with /I = S/l 1. The latter result implies that using 
8/11-balanced test comparison one can sort an arbitrary poset A in at most 

q < 2.2 log, [E(A) 1 (2.3) 

queries. 
It is also known [2] that computing the “balancing constants” 

pz, = IE(A&[~ <j])l/IE(A)I =probability{i <j in E(A)} 

is #P-hard. 

However, one can compute sufficiently good approximations to the balancing 
constants, say 

I&, - /I,, I < 0.1 with probability 0.99 

in time O(T), where T is the complexity of nearly uniform generation of linear 
extensions of A. Therefore, a well-balanced comparison in a gizlen poset can also be 
found with the same probability in time O(T). 

Since, T necessary to obtain (1.19) with a fixed v, can grow at least as n3 (see 
example in Remark l), in our computational experiments (codes were written by E. 
Zhirova, Moscow Institute of Physics and Technology, 1989) we used another 
approach, based on the following fact [6]: 

Let 



14 ALEXANDER KARZANOV AND LEONID KHACHIYAN 

be the average rank of i E ( 1, . . . , n} over the set of linear extensions of A, then an 
arbitrary pair i, j of elements such that 

Ir, - rj I < 1 (2.5) 

is an S/l l-balanced comparison in A. 

Remark 4. Since IE(A)\ > 1, it is easy to see that a pair (2.5) always exists and that 
(2.4) -(2.5) imply the incomparability of i and j in A. In fact, it is easy to show that 
if instead of (2.5) a pair i, j of incomparable elements satisfies a weaker inequality, 
say Ir, - rI 1 < 2, then the comparison of i and j is still b-balanced with some 
absolute constant /I < 1. 

We generated a single random trajectory of RandWalk’ in E(A) for averaging the 
ranks FZ of elements at the moments t = n, 2n, . . . , LT/n] for T = 10n’. Due to the 
choice of the moments of sampling on the trajectory, these computations require 
only O(T) = O(n’) operations. Next we determined a possible well-balanced com- 
parison using the strategy of minimizing Iii - F, 1 over i, j E ( 1, . . . , n >. Though this 
approach does not guarantee a reliable determination of well-balanced compari- 
sons, the computational results on the total number q of queries were encouraging 
at least for the moderate values of n. For instance, if A consists of n singletons, one 
gets the best known bounds on q up to n = 16 and the results, which differ by at 
most 5% from the lower bound (2.1) up to n = 50. This is also true in the 
experiments with merging two chains of lengths n, + n, < 50, and in some other 
experiments. Thus, at least for posets of moderate size, even very short random 
trajectories result in the total number of queries, which is much less than the 
theoretical upper bound (2.3) for long trajectories, and close to the information 
theory lower bound (2.1). 
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