
J. Mol. Biol. (1996) 263, 196–208

Using Evolutionary Trees in Protein Secondary
Structure Prediction and Other Comparative
Sequence Analyses

Nick Goldman 1*, Jeffrey L. Thorne 2 and David T. Jones 3

1Department of Genetics Previously proposed methods for protein secondary structure prediction
University of Cambridge from multiple sequence alignments do not efficiently extract the
Downing Street, Cambridge evolutionary information that these alignments contain. The predictions of

these methods are less accurate than they could be, because of their failureCB2 3EH, UK
to consider explicitly the phylogenetic tree that relates aligned protein2Program in Statistical sequences. As an alternative, we present a hidden Markov model approach

Genetics, Department of to secondary structure prediction that more fully uses the evolutionary
Statistics, Box 8203, North information contained in protein sequence alignments. A representative
Carolina State University example is presented, and three experiments are performed that illustrate
Raleigh, NC 27695-8203 how the appropriate representation of evolutionary relatedness can
USA improve inferences. We explain why similar improvement can be expected

in other secondary structure prediction methods and indeed any3Department of Biological
comparative sequence analysis method.Sciences, University of

7 1996 Academic Press LimitedWarwick, Coventry
CV4 7AL, UK

Keywords: comparative sequence analysis; evolution; hidden Markov
*Corresponding author model; phylogenetic trees; protein secondary structure prediction

Introduction

Numerous methods have been proposed that use
multiple sequence alignments to assist in secondary
structure analysis and prediction (e.g. Crawford
et al., 1987; Zvelebil et al., 1987; Levin & Garnier,
1988; Rost & Sander, 1993; Stultz et al., 1993; Benner
et al., 1994; Wako & Blundell, 1994b; Salamov &
Solovyev, 1995). These methods have, however,
used naive averaging, or at best highly ad hoc
weighting schemes, to combine the contributions of
all sequences. With unweighted averaging, the
sequences are in effect being treated as though they
were independent realizations of some process.
Relationships between ad hoc weighting schemes
and implicit assumptions about the process that
generated the protein sequence data are less clear.
Whatever the implicit assumptions are, there is no
reason to expect that they are by chance either
biologically meaningful or plausible.

It is appropriate to determine sequences’ contri-
butions to analyses in a manner that correctly
represents the best estimate of the independent
information they contain. For example, consider

two homologous protein sequences. If these are
closely related in evolutionary terms, they have had
little time to diverge and will be quite similar. As
a consequence, there will be little additional
information in the second sequence that is not
contained in the first. But if these sequences are
more distantly related, they will be less similar and
we expect more information to be available with the
inclusion of the second. This has been recognized
previously and has motivated heuristic algorithms
used in structure prediction (e.g. see Benner et al.,
1994) and weighting schemes in automated
predictors that attempt to account for evolutionary
conservation (e.g. see Rost & Sander, 1994). Other
sequence weighting schemes have been proposed
for sequences related by evolutionary trees
(Altschul et al., 1989; Gerstein et al., 1994), but have
not been applied to structure prediction. None of
these methods has addressed the problem of
non-independence via careful consideration of the
statistical issues raised by evolutionary relation-
ships. As a consequence, they extract less infor-
mation pertaining to secondary structure than
could be obtained by a more rigorous treatment.

The realization that there is non-independence of
biological characteristics between study units
(typically species) has already revolutionized
studies in comparative evolutionary biology (e.g.

Abbreviations used: ML, maximum likelihood; HMM,
hidden Markov model; PDB, Brookhaven Protein Data
Bank.
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Felsenstein, 1985; Harvey & Pagel, 1991), where the
phrase ‘‘phylogenetic inertia’’ (Harvey & Purvis,
1991) is used to describe the non-independence of
characteristics through descent from common
ancestors. Analogous methodological advances are
beginning to make inroads in population genetics
(Felsenstein, 1992). There is no reason why the same
ideas cannot be applied to the comparative analysis
of amino acid and DNA sequences, where a large
amount of research has already been performed on
the estimation of phylogeny. The usual view of
phylogenies as representing evolutionary relation-
ships is valid but it is also valid to interpret
phylogenies as representing the correlation struc-
ture among sequences. We explain here how
prediction of protein secondary structure can be
improved by careful consideration of phylogenetic
relationships. Similar improvements can be ex-
pected in other comparative sequence analyses that
do not consider phylogeny explicitly. For example,
improvement can be anticipated in database
searching algorithms.

When analyzing homologous sequences or other
correlated data, methods that pay attention to the
processes that generated the data are among the
most powerful. By assuming and using an explicit
probabilistic model for the evolutionary processes
that generated the sequence data, homologous
sequences can be analyzed with a maximum
likelihood approach.

The standard maximum likelihood (ML) analysis
for estimation of phylogenetic trees and branch
lengths from aligned DNA sequences was originally
described by Felsenstein (1981). Kishino et al. (1990)
subsequently adapted the methodology to analysis
of aligned protein sequences. With these methods,
Markov process models of the nucleotide substi-
tution or amino acid replacement processes are used
to define probabilities, as functions of time, of any
possible substitution or replacement. These proba-
bilities, along with a phylogenetic tree topology and
its branch lengths, define the likelihood function of
the observed data for a candidate tree. The topology
and associated branch lengths that maximize the
likelihood are the ML estimates. This widely used
procedure has been fully described by, for example,
Felsenstein (1981) and Swofford et al. (1996).

Virtually all ML approaches are based on models
of sequence evolution that assume that each
position of the sequence alignment is independent
of all others. Clearly, this is biologically unrealistic.
For protein-coding sequences, the evolution of each
site will be influenced by both neighboring and
distant sites.

To overcome some of the limitations of ‘‘indepen-
dent sites’’ models, and to illustrate the complete
use of evolutionary information rather than crude
averaging, we adopt a hidden Markov model
(HMM) approach for secondary structure predic-
tion. HMM approaches were introduced to the
analysis of molecular sequences by Churchill (1989),
who analyzed regions of varying G + C con-
tent in single DNA sequences. We use Churchill’s

HMM terminology. HMM approaches have re-
cently been employed for the detection and charac-
terization of sequence similarities (Baldi et al., 1994;
Krogh et al., 1994) and have been successful despite
the fact that these studies ignore effects of common
ancestry. HMM applications in secondary structure
prediction have only been to methods analyzing
single sequences (Asai et al., 1993; White et al.,
1994). HMM approaches in molecular evolution
have been to model regional heterogeneity of
substitution rate in aligned DNA sequences (Yang,
1995; Felsenstein & Churchill, 1996).

As with previous HMM approaches to secondary
structure prediction, we categorize the secondary
structure at each position of a sequence and assume
that the organization of these categories along the
sequence can be described by a Markov chain. The
model is ‘‘hidden’’ because the secondary structure
is not observed in the data (although it can be
estimated). A Markov process model for each
category of secondary structure describes evolution
by amino acid replacement on the branches of a
phylogenetic tree. These models differ between
categories, reflecting differences in amino acid
composition and in patterns and rates of amino acid
replacement observed in different secondary struc-
tures. This contrasts with previous Markov process
models of DNA substitution (e.g. see Jukes &
Cantor, 1969; Felsenstein, 1981) and amino acid
replacement (e.g. see Dayhoff et al., 1972, 1978;
Kishino et al., 1990) because these attempt to
describe the evolutionary process for an ‘‘average’’
site. Descriptions of amino acid replacement that
differ according to context have been given in the
past (e.g. see Topham et al., 1993; Wako & Blundell,
1994a,b; Koshi & Goldstein, 1995), but the potential
for these descriptions to work in concert with an
evolutionary tree has not been exploited. Our model
is amenable to ML analysis, permitting estimation
of phylogenetic relationships (evolutionary tree
topology), evolutionary distances (branch lengths),
and the secondary structure of the protein
sequences analyzed.

We present an example analysis of the Pseu-
domonas fluorescens (PSEFL) xylanase sequence
(known to adopt the TIM-barrel topology) and six
homologs, and devise three experiments that
illustrate how secondary structure prediction can be
aided by the use of sequences homologous to the
target sequence. More importantly, the experiments
demonstrate the significant further improvement
possible when the phylogenetic relationships of the
sequences are considered. The application of our
HMM to phylogenetic estimation has been de-
scribed by Thorne et al., (1996).

Theory

Organization of secondary structure
along sequences

The description of the organization of secondary
structure along amino acid sequences defines the
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system equations of the HMM. We assume that ci ,
the secondary structure at site i, depends only on
ci−1, the structure at site i − 1 (i.e. the site adjacent
to i toward the amino-terminal end). This depen-
dence is described by a set of stationary transition
probabilities. We write the probability that a site is
in category l if the preceding site is in category k as
rkl ; clearly Sl rkl = 1 for all k. Here, we have used
three secondary structure categories: a-helix (a),
b-sheet (b) and loop (L). The term loop is used
solely to indicate that a site is in neither an a-helix
nor a b-sheet.

A simple way to estimate the values of the rkl is
to examine amino acid sequences of known
secondary structure, count the number of times
sites in secondary structure category k are followed
by sites in category l and divide this by the number
of times sites in category k are followed by sites in
any category. We have performed this estimation
on sequences taken from the BRKALN database of
structure-related multiple sequence alignments
maintained by one of us (D.T.J., unpublished
results). This database contains amino acid se-
quences classified into protein families for which
the tertiary structure of at least one member has
been experimentally determined. It was built by
extracting a set of non-homologous protein
sequences from the January 1995 release of the
Brookhaven Protein Data Bank (PDB; Bernstein
et al., 1977). In this instance 207 chains were
extracted, no pair of which showed sequence
identity greater than 25%. Low-resolution struc-
tures (resolution >2.6 Å) were excluded from
consideration, along with NMR structures. For each
chain from PDB, a dynamic programming-based
sequence similarity search (Gotoh, 1982) was made
through release 25.0 of the OWL non-redundant
protein sequence database (Bleasby & Wootton,
1990) to find sequences with greater than 30%
sequence identity with the sequence of the known
structure. A multiple sequence alignment method
(Taylor, 1988) was then applied to each of the
resulting 207 families of sequences.

Secondary structure assignments were extrapo-
lated across each aligned sequence family in
BRKALN from the assignments for the master
structure determined using the DSSP program
(Kabsch & Sander, 1983). Where an insertion
occurred in the middle of a secondary structure in
the known structure, the inserted residues were
given the same secondary structure assignment.
This occurrence was rare, however, and mostly
occurred as a result of probable b-bulges in some
families. Insertions occurring elsewhere were
defined to have unknown secondary structure and
were excluded from all calculations of observed
replacement counts. We refer to the resulting data-
base as the DTJ-database. Both it and the BRKALN
database are available by anonymous ftp from the
directory pub/HMM at ftp.biochem.ucl.ac.uk.

Only one sequence from each family was used in the
estimation of the rkl, to avoid biasing the estimates
towards the patterns of secondary structure organiz-

Table 1. HMM of organization of secondary structure
along sequences

To

From a b L

a 0.9085 0.0005 0.0910
(13290) (8) (1331)

b 0.0051 0.8813 0.1836
(50) (8008) (1812)

L 0.0619 0.0862 0.8519
(1341) (1867) (18450)

C 0.3248 0.2124 0.4628

The Table shows the probability of a residue in a given
secondary structure category being followed by a residue in each
category, for the three categories considered in this work.
Underneath, in parentheses, are the numbers of times each
transition was observed in the sequences from the DTJ-database.
The row labelled C gives the resulting equilibrium distribution
of secondary structure categories.

ation found in protein families that happen to have
many members. We further classified the DSSP
secondary structure assignments as follows: H,
a-helix; A, E and P, b-sheet; all others, loop. Counts,
estimates of rkl and the resulting equilibrium
distribution of secondary structure categories (Ck ) are
shown in Table 1.

Amino acid replacement processes

The description of the evolutionary replacement
of amino acids provides the observation equations
of the HMM. We use different reversible Markov
process models, each with 20 states corresponding
to the 20 amino acids, for each of the three
secondary structure categories in our model. To
define the Markov process amino acid replacement
model for each secondary structure category k, we
must estimate q(k)

ij , the instantaneous rate of
replacement of amino acid i by amino acid j (j $ i )
for a site in secondary structure category k (we use
parentheses about the k to distinguish it from an
exponent). We write the matrix of values q(k)

ij as Q(k),
with equilibrium distribution p(k) having elements
p(k)

i . The collection of rate matrices for all secondary
structure categories will be represented by Q.
Reversibility then requires:

p(k)
i q(k)

ij = p(k)
j q(k)

ji [i, j, k

where, by definition,

q(k)
ii = − Sj$iq(k)

ij .

We estimate the Q(k) as follows (see also Jones
et al., 1992). For each sequence of every family in the
DTJ-database, the pair formed with its closest
neighbor is considered. Pairs that after alignment
have identical residues at less than 85% of
alignment positions are discarded. This is to
ensure that only evolutionarily closely related
sequence pairs are used, a necessary condition
for an approximation made below. Suppose now
that the remaining sequence pairs are indexed
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m = 1, . . . , M, and that pair m has Nm alignment
positions where neither sequence has a gap. Let n(k)

ij

be the total number of alignment positions of
category k in the M comparisons where one of the
two residues is amino acid i and the other is j, and
let n(k)

ii be twice the total number of positions
containing amino acid i in both sequences.
Denoting the amount of evolution separating the
sequences in comparison m by tm , and with the
equilibrium distribution of secondary structure
categories Ck as above, then:

E[n(k)
ij ] = s

M

m = 1

CkNm (p(k)
i q(k)

ij tm + p(k)
j q(k)

ji tm )

= 2Ckp(k)
i q(k)

ij s
M

m = 1

Nmtm [ i$j (1)

This uses the fact that the probability of a
replacement is approximately equal to the product
of instantaneous rate of replacement (q(k)

ij ) and time
(tm ) if the time is small and the probability of
multiple replacements is negligible; hence the strict
85% sequence identity rule above. Also:

E$sr

n(k)
ir % = 2Ckp(k)

i s
M

m = 1

Nm [i, r (2)

If we approximate E[n(k)
ij ] by n(k)

ij and E[Srn(k)
ir ] by

Srn(k)
ir then, for i$j:

n(k)
ij

s
r

n(k)
ir

c
E[n(k)

ij ]

E$sr

n(k)
ir %

= q(k)
ij

s
M

m = 1

Nmtm

s
M

m = 1

Nm

(3)

This indicates that we can estimate all the rates
of replacement (q(k)

ij ) to within an unimportant
multiplicative constant that does not depend on i,
j or k. The equilibrium frequencies of amino acids
for each secondary structure category, p(k), are
determined by the Q(k).

Since our rates of replacement are determined
only to within a multiplicative constant, we can
scale them so that the overall rate of replacement at
equilibrium at a loop site, SiSj$ip(L)

i q(L)
ij 0 − Sip(L)

i q(L)
ii ,

equals 1. With this scaling, we find that the
replacement rate at an a-helix site is 1.027, and that
at a b-sheet site is 0.775. Figure 1 gives a graphical
representation of our estimates of the scaled Q(k)

and of p(k); precise values are available in electronic
form upon request from the authors. It is of interest
to note that the estimates from the DTJ-database of
the replacement rates and equilibrium frequencies
vary among secondary structure categories, sup-
porting our expectation that evolution and sec-
ondary structure are not independent.

We scale time so that the lengths of branches of
phylogenetic trees are measured in units of
expected number of replacements per 100 sites,
analogous to the PAMs of Dayhoff et al. (1972,

1978), except that our measure represents the
expectation over three secondary structure cat-
egories.

An alternative method for estimating what are in
effect our Q(k) is given by Koshi & Goldstein (1995).
Our results (Figure 1) may be compared with theirs
(Koshi & Goldstein, 1995) and with those of
Thompson & Goldstein (1996a).

Likelihood and probability calculations

We can use our model to estimate both
phylogeny and secondary structure. If either is
known with certainty, it may be incorporated into
the model as a fixed value and should improve
estimates of the other. Here, we describe the theory
assuming both phylogeny and secondary structure
are unknown and to be estimated. Suppose an
aligned data set S is of length N, and let the first i
sites be represented by Si and the ith column itself
be represented by si . The first stage is to estimate
T, the topology and branch lengths of the
evolutionary tree. Using an ML approach, we aim
to find the T that maximizes Pr(S =T, r, Q). Since our
estimates of r and Q are already determined (see
above) from the DTJ-database, we drop them from
the notation here.

It is possible to calculate Pr(S =T )0Pr(S =T, r, Q)
recursively. For site i we compute Pr(Si , ci =T ) for
each possible secondary structure category ci using
the fact that, for i > 1:

Pr(Si , ci =T ) = s
ci−1

Pr(Si−1, ci−1=T )

× Pr(ci =Si−1, ci−1, T )Pr(si =Si−1, ci−1, ci , T ) (4)

Due to the assumptions of our model, this can be
simplified to:

Pr(Si , ci =T ) = s
ci−1

Pr(Si−1, ci−1=T )rci−1ci Pr(si =ci , T ) (5)

Calculation of the terms Pr(si =ci , T ) is straightfor-
ward using the Markov process model of amino
acid replacement developed above. The methods
are essentially the same as those described by
Felsenstein (1981) to calculate Pr(si =T ) for a
four-state model of DNA substitution. To calculate
Pr(si =ci , T ) for our model, it is simply necessary to
repeat this procedure independently for each
secondary structure category.

Insertions and deletions are not accounted for in
our model. To allow for analysis of alignments with
indels, sequence positions with gaps are treated as
unknown amino acids and make no contribution
to overall likelihood calculations. In effect, the
evolutionary tree for each alignment position is
‘‘pruned’’ so that only those branches leading to
sequences with an amino acid at that position
remain. This is the treatment of gaps used by the
ML phylogeny inference programs in the PHYLIP
package (Felsenstein, 1995). For our application, we
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Figure 1. Graphical representation of amino acid replacement model parameters Q(k) and p(k). (a) Areas of squares
are proportional to the estimated replacement rates in matrix Q(L). (b) Q(a). (c) Q(b). Rates vary from 0 (e.g. q(L)

NW) to 0.834
(q(a)

SA) when scaled as described in the text. (d) Heights of columns represent elements of the vectors of equilibrium
distributions p(L), p(a) and p(b).

think that this is preferable to the common practice
in phylogenetics of deleting alignment positions
where one or more sequences have gaps, because
such a technique would disrupt information
relating to organization of secondary structure
along the sequences.

To start the recursion for Pr(S =T ), note that:

Pr(S1, c1=T ) = Pr(s1=c1, T )Pr(c1=T ) = Pr(s1=c1, T )Cc1 (6)

and to complete the calculation note that:

Pr(S =T ) = s
cN

Pr(S, cN =T ) = s
cN

Pr(SN , cN =T ) (7)

The ML estimate Tx , the value of T that maximizes
Pr(S =T ), may be found with numerical optimization
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routines. These procedures are further described by
Thorne et al. (1996).

Having found Tx , it is further possible to estimate
the (hidden) secondary structure states, via the
posterior distribution Pr(ci =S, Tx ). These probabili-
ties are calculated using the following formulae (in
which all probabilities are conditional on Tx , which
is omitted for brevity):

Pr(ci =Si−1) = s
ci−1

Pr(ci =Si−1, ci−1)Pr(ci−1=Si−1)

= s
ci−1

rci−1ci Pr(ci−1=Si−1) (8)

Pr(ci =Si ) = Pr(si =Si−1, ci )Pr(ci =Si−1)

s
ci

Pr(si =Si−1, ci )Pr(ci =Si−1)

= Pr(si =ci )Pr(ci =Si−1)

s
ci

Pr(si =ci )Pr(ci /Si−1)
(9)

Pr(ci =S) = Pr(ci =Si ) s
ci+1

rcici+1Pr(ci+1=S)
Pr(ci+1=Si )

(10)

Equation (8) follows immediately from the
law of total probability. Equation (9) is derived
using Bayes’ theorem, noticing that Pr(ci =Si ) =
Pr(ci =Si−1, si ) and that the independence of each
alignment column si and the preceding columns Si−1

means that Pr(si =Si−1, ci ) = Pr(si =ci ). Equation (10) is
derived by the following argument:

Pr(ci =S) = s
ci+1

Pr(ci , ci+1=S)

= s
ci+1

Pr(ci+1=S)Pr(ci =ci+1, S)

= s
ci+1

Pr(ci+1=S)Pr(ci =ci+1, Si )

= s
ci+1

Pr(ci+1=S)Pr(ci , ci+1=Si )
Pr(ci+1=Si )

= Pr(ci =Si ) s
ci+1

Pr(ci+1=ci )Pr(ci+1=S)
Pr(ci+1=Si )

.

Here, the first equality follows from the law of total
probability, the second from the definition of
conditional probability and the third from the
conditional independence of ci and sj (j > i ) given
ci+1. The last two equalities follow from the
definition of conditional probability. Additional
details are given by Churchill (1989).

The formulae are applied iteratively. Starting
with the initial condition:

Pr(c1=S0) = s
c0

rc0c1Pr(c0=S0) = s
c0

rc0c1Cc0 = Cc1 (11)

Equations (8) and (9) define a recurrence relation-
ship for Pr(ci =Si ), the probabilities that column i is
in each possible secondary structure state (ci ) given
the data up to column i (Si ), via the intermediate
value Pr(ci =Si−1). They are used repeatedly with i
increasing from 1 to N (the ‘‘forward pass’’) until
Pr(cN =SN )0Pr(cn =S) is calculated. Equation (10) is
then used iteratively with i decreasing from n − 1 to
1 (the ‘‘backward pass’’) to calculate Pr(ci =S) for
each i, using the values of Pr(ci+1=Si ) already
calculated in the forward pass. The result is the
posterior distribution Pr(ci =S): for each site, the
posterior probabilities that the site is in each of the
secondary structure categories, given the data.
Structure predictions are taken from these probabil-
ities according to the rule that the predicted
secondary structure category at a site is that with
highest posterior probability.

Decision rules based on results other than
the Pr(ci =S) are possible, for example to choose the
combination C04c1, c2, . . . , cN5 that makes the
greatest contribution to the likelihood Pr(S =T ) =
SC Pr(S, C =T ). We are currently investigating
alternative decision rules.

Computer programs implementing the methods
described here are available from N.G.
(N.Goldman.gen.cam.ac.uk for FORTRAN code)
and J.L.T. (thorne.stat.ascu.edu for C code) or by
anonymous ftp from the directory pub/HMM at
ftp.biochem.ucl.ac.uk.

Data

We illustrate our methods using xylanase
sequences and close homologs. Xylanase is not
represented in the 207 families of the DTJ-database.
The xylanase A amino acid sequence for Pseu-
domonas fluorescens (SWISSPROT ID xyna psefl,
accession number P14768; we use the abbreviation
PSEFL) was one of the target sequences in the
recent Asilomar Prediction Challenge (Riddihough,
1994; Lattman, 1995; Moult et al., 1995). Its structure
has subsequently been determined by X-ray
diffraction to be a TIM-barrel [(b/a)8-barrel] (Harris
et al., 1994; PDB entry 1XYS).

Database searches performed with the FASTA
program (Pearson & Lipman, 1988) of the GCG
package (Devereux et al., 1984) yielded six
homologs with identities greater than 28% over a
long part of the PSEFL sequence. We considered
these sequences likely to have essentially the same
secondary structure (Chothia & Lesk, 1986;
Flores et al., 1993) and therefore to be suitable
for alignment and analysis. The sequences
were xylanase sequences from Cellulomonas fimi
(gux celfi, P07986; CELFI), Bacillus stearother-
mophilus (xyna bacst, P40943; BACST), a ther-
mophilic bacterium RT8.B4 (xyna ther8, P40944;
THER8) and a Bacillus species (strain C-125:
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xyna bacs5, P07528; BACS5), an endogluconase
sequence from Caldocellum saccharolyticum (gun-
b calsa, P10474; CALSA) and a celloxylanase
sequence from Clostridium stercorarium (cexy closr,
P40942; CLOSR). Our results with these sequences
are typical of a number of analyses that we have
performed on target sequences from the Asilomar
Prediction Challenge and other sources.

The sequences were aligned using the
TREEALIGN program (Hein, 1990) and the result-
ing alignments were improved by hand. The final
alignment we used, shown in Figure 2, contains
102 a-helix positions, 52 b-sheet positions and 155
loop positions.

Areas of the alignment not considered reliable
were excluded from the analysis by replacing
amino acids and gaps in uncertain sites by a
missing data code in all but the PSEFL sequence.
These missing data codes were treated in the
manner described above for gaps. This procedure
seems justified, as the pattern of amino acid
replacements will be disrupted by alignment errors
and because such unreliable regions may be those
where the sequences are most likely to differ in
secondary structure. Figure 2 indicates those parts
of the xylanase alignment that were considered
unreliable, and the true secondary structure as
determined using DSSP. Sites where the multiple
alignment procedure had introduced gaps into the
PSEFL sequence of determined secondary structure
were treated as being of unknown secondary
structure, making no contribution to secondary
structure prediction accuracy scores.

Results

HMM analyses

The ML estimate of the phylogenetic tree derived
from our HMM for the xylanase data set is shown
in Figure 3, and the corresponding secondary
structure prediction is represented in Figure 4. The
secondary structure prediction results are summar-
ized in the all 7, HMM cell of Table 2. Mindful of
the warning given by Jenny & Benner (1994), that
there is more to secondary structure prediction than
the overall proportion of positions correctly
classified (Qtotal), Table 2 records the proportion of
positions of each secondary structure category
correctly classified (Qa, Qb and QL). Table 2 records
also the proportion of positions correctly predicted
as not belonging to a particular secondary structure
category among those positions that actually do not
belong to that category (the ‘‘sensitivities’’, Ra, Rb

and RL of Ralph et al., 1987).
To illustrate the advantages of allowing depen-

dencies introduced by common ancestry, we
devised three experiments.

Effects of adding homologous sequences

First, to assess the effect on secondary structure
prediction of including homologous sequences we

Figure 2. Amino acid sequence alignment of the seven
xylanase homologs. Full species names and sequence
accession numbers are given in the text. The first row of
each block represents the true secondary structure.
Secondary structure categories are represented by H for
a-helix, E for b-sheet, a blank for loop, and ? for
unknown. Dashes in the alignment represent gaps and
vertical bars (=) represent areas treated as missing data
because the alignment was deemed relatively uncertain.
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Figure 3. The ML estimate of phylogeny derived from
our HMM method for the seven xylanase homologs. The
scale-bar refers to the branch lengths, measured in units
of expected number of replacements per 100 sites.

Figure 4. Graphical representation of our HMM
secondary structure prediction for the Pseudomonas
fluorescens xylanase sequence. The xylanase sequence
alignment has 315 columns and the predictions at sites 1
to 105, sites 106 to 210 and sites 211 to 315 are indicated
separately. For each site, the height of the column above
the black horizontal line represents the posterior
probability estimate for the true secondary structure
category at that site. The posterior probability estimates
of the other two secondary structure categories are
indicated below the horizontal line. No estimate is shown
for sites corresponding to insertions relative to the
sequence of known structure. The shades that represent
each of the three secondary structure categories are
indicated on the Figure.

created three new data sets from the original
alignment of Figure 2. The first (PSEFL only)
consists of the PSEFL sequence alone; the second
(close 3) comprises PSEFL and its two closest
homologs, CELFI and CLOSR; the third (med 5)
comprises the close 3 set plus THER8 and CALSA.
Together with the original alignment (all 7), the
progression PSEFL only–close 3–med 5–all 7 is
intended to represent the gradual addition of
information contained in patterns of amino acid
replacement. The four data sets were analyzed with
the HMM methods described above. In each case,
the analysis included re-estimation of the phyloge-
netic tree. A summary of the results of secondary
structure prediction is shown in Table 2. The
contribution of the increasing number of sequences
may be assessed by comparing results in the HMM
column.

We find that overall prediction accuracy (Qtotal) is
higher when proteins related to PSEFL are included
than when only PSEFL is considered. The
improvement in Qb, the prediction accuracy for
b-sheets, is especially large. As more-distant
relatives are incorporated into the analysis, overall
prediction accuracy declines slightly, but it is
always superior to prediction based on the PSEFL
sequence alone. The decline may be due to the more
distant relatives not sharing precisely the same
secondary structure. Thus, the more distant
homologs may introduce more noise than signal.
This would be the case for all secondary structure
prediction methods that use multiple sequence
alignments.

In common with other studies (e.g. Lenstra et al.,
1977; Levin & Garnier, 1988; Rost & Sander, 1993),
we find b-sheets most difficult to predict accurately.
However, our b-sheet prediction scores (Qb)
continue to improve as even distant relatives of
PSEFL are included in the analyses. This could
indicate that b-sheet regions in the xylanase protein
are well conserved across long evolutionary times,

whereas a-helix regions are relatively less con-
served. This would be in agreement with the
observation that the b-barrel is the most highly
conserved structural feature across TIM-barrel
families (Pickett et al., 1992; Sergeev & Lee, 1994).

Effects of neglecting phylogeny

Second, we devised an experiment to assess the
effect of considering phylogeny on secondary
structure prediction. This is accomplished by
comparison of the results described for the four
data sets above with those obtained when the
sequences within each data set are treated as
though they were independent of one another.
Specifically, we assume that residues from different
sequences that are in a certain column of the
alignment all belong to the same underlying
secondary structure category but are otherwise
independent. Our HMM method normally uses
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Table 2. Accuracy of secondary structure prediction using the HMM
method with and without consideration of the evolutionary tree and

with duplicate copies of one sequence
Analysis method

HMM (no tree) HMM (no tree)
Data set HMMa HMM (no tree)b +2PSEFLc + 9PSEFLd

PSEFL only 65.7 65.7 64.7 56.6
72.5 79.7 72.5 79.7 82.4 77.8 61.8 81.6

5.8 95.7 5.8 95.7 23.1 86.8 53.8 75.5
81.3 65.6 81.3 65.6 67.1 81.2 54.2 78.6

close 3 74.4 68.0 64.7 56.6
82.4 88.4 80.4 78.7 81.4 81.2 58.8 82.6
38.5 94.2 25.0 92.6 36.5 83.3 55.8 74.7
81.3 74.0 74.2 76.6 63.2 82.5 55.5 78.6

med 5 71.5 64.7 61.2 55.0
73.5 89.9 66.7 85.5 63.7 87.4 53.9 82.6
59.6 89.5 51.9 81.7 55.8 75.1 55.8 73.2
74.2 74.0 67.7 79.2 61.3 80.5 55.5 77.9

all 7 69.6 61.5 58.9 53.7
66.7 91.3 59.8 86.5 58.8 87.0 52.9 82.6
63.5 84.0 55.8 77.8 53.8 75.1 51.9 72.8
73.5 77.3 64.5 77.9 60.6 76.6 54.8 76.0

As fully described in the text, variants of the HMM method are applied to four
xylanase data sets. Each cell of the Table contains seven numbers: Qtotal ; Qa and
Ra; Qb and Rb; QL and RL. Qtotal is in bold; Ra, Rb and RL are in italics. The PSEFL
only, HMM and PSEFL only, HMM (no tree) cells are necessarily identical, as
there is no evolutionary information in a single sequence.

a Unmodified HMM method.
b HMM method but with sequences treated as independent.
c As HMM (no tree) but with two duplicate copies of the PSEFL sequence

added to each data set.
d As HMM (no tree) but with nine duplicate copies of the PSEFL sequence

added to each data set.

the estimated phylogenetic tree, but this infor-
mation can be excluded by re-running the HMM
analysis with the sequences’ phylogeny constrained
to have infinitely long branch lengths (so the tree’s
topology is in fact irrelevant), in which case the
sequences are indeed being treated as independent.

Secondary structure prediction summaries are
shown in Table 2 under the heading HMM (no
tree). Comparisons between the columns of Table 2
indicate the effect of using an evolutionary tree to
model effects of common ancestry instead of
treating sequences as independent. For the PSEFL
only data set, the results are of course the same as
there can be no evolutionary information in a single
sequence. However, for the three other data sets we
find there is a deterioration (6.8 to 9.7%) in Qtotal

when evolutionary information is ignored. Predic-
tions of a-helices, b-sheets and loops deteriorate
approximately equally when we ignore the evol-
utionary correlations in the data. All prediction
accuracy criteria are affected approximately equally
across the range of data sets, from those that
include only the closer relatives of PSEFL to those
that include the most divergent ones.

Effects of closely related homologs when
phylogeny is neglected

The third experiment was designed to investigate
further the effects of failing to model effects of
common ancestry. We again applied this exper-

iment to the four xylanase data sets, and performed
the HMM (no tree) analysis as above on these
alignments so that the sequences were treated as
independent. To simulate the effects of having
closely related sequences present in an alignment,
we ran two related analyses for each data set: HMM
(no tree) + 2PSEFL, in which two extra copies of the
PSEFL sequence were added to the data sets, and
HMM (no tree) + 9PSEFL, in which nine extra
copies of PSEFL were added.

Adding exact copies of sequences to data sets
analyzed by our (unmodified) HMM method has
no effect on the results, as all equivalent sequences
are (correctly) positioned in exactly the same place
in the phylogenetic tree. Multiple exact copies
therefore contribute no more information than a
single copy. However, methods that do not
carefully consider phylogenetic relationships are
prone to give additional copies of one sequence
undue influence on the secondary structure
prediction. Although this is an artificial example of
the consequences of ignoring common ancestry, we
believe that it may not be too different from the
situation in real data sets where inappropriate
weight could be given to relatively similar
sequences.

The secondary structure prediction results of
these analyses are summarized in the last two
columns of Table 2. Comparisons between these
columns and the HMM (no tree) column indicate a
further effect of biasing analyses by failing to allow
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for phylogenetic relationships of closely related
sequences. For each data set, the trend is for the
overall accuracy (Qtotal) to decline as more duplicate
sequences are added. This can be attributed in
particular to a fall in QL. The trend is also for
prediction accuracy to decline as more-distantly
related sequences are included (movement down
the appropriate columns of Table 2). This decline is
attributable to deterioration in Qa and, to a lesser
extent, QL.

These effects can be explained as follows. As
more copies of the PSEFL sequence are added
with no account taken of their relationships to
one another, each sequence position appears
increasingly conserved as more sequences share
the same residue. This (mis)information leads to
the (mis)interpretation that the secondary structure
for which that residue is most probable (i.e. the
k that maximizes p(k)

i , where the repeated residue
is i; see Theory) is overwhelmingly the most
likely. The Markov model of organization of
structure along sequences becomes irrelevant, and
secondary structure prediction depends only on
the PSEFL sequence and the secondary structures
that make each of its residues (independently) most
likely.

Other analyses

The PHD program (Rost & Sander, 1993, 1994;
Rost et al., 1994) is among the best automated
predictors of secondary structure but it does not
explicitly consider phylogenetic relationships.
Therefore, we use the PHD program to further
illustrate the effects of failing to model common
ancestry of related sequences. The four xylanase
data sets were analyzed using PHD, and re-
analyzed with two or nine extra copies of the
PSEFL sequence added (PHD + 2PSEFL and
PHD + 9PSEFL, respectively). We did not use the
optional PHD facilities to search databases for
homologs and align sequences; in addition, since
PHD does not accept ‘‘unknown residue’’ codes
in sequences (analogous to our use of missing
data codes for unreliable alignment sites), we
recoded the uncertain alignment areas (Figure 2)
as gaps. This procedure was designed to make
the assumptions and data of our HMM method
and PHD as close as possible; however, we could
not match them completely. Importantly, PHD
allows the positions of gaps in an alignment to
affect secondary structure predictions. This is
desirable because gaps tend to be found in loop
regions (Benner & Gerloff, 1991; Thornton et al.,
1991). Since it is expected that the uncertain areas
of our alignment are in loop regions, and
because loop regions may be less constrained by
selection, PHD will likely have a qualitative
advantage over our HMM method for these
areas.

The secondary structure prediction results of the
PHD, PHD + 2PSEFL and PHD + 9PSEFL analyses
are summarized in Table 3. Comparisons between

Table 3. Performance of secondary structure prediction
using the PHD method and the PHD method with

additional copies of the PSEFL sequence
Analysis method

PHD+ PHD+
Data set PHD 2PSEFL 9PSEFL

PSEFL only 71.8 71.8 71.8
82.4 84.1 82.4 84.1 82.4 84.1
61.5 88.3 61.5 88.3 61.5 88.3
68.4 84.4 68.4 84.4 68.4 84.4
(78.7, 0.73) (78.7, 0.73) (78.7, 0.73)

close 3 77.4 76.1 76.1
89.2 85.0 86.3 85.5 86.3 85.0
55.8 93.4 57.7 91.8 57.7 91.4
76.8 85.7 75.5 85.1 75.5 85.1
(82.7, 0.72) (83.2, 0.75) (83.0, 0.74)

med 5 79.9 78.6 78.3
89.2 89.9 85.3 89.4 85.3 90.8
63.5 91.4 63.5 91.4 65.4 90.7
79.4 87.7 79.4 85.7 78.1 84.4
(89.9, 0.66) (89.5, 0.67) (87.7, 0.67)

all 7 79.6 78.6 77.0
90.2 88.4 88.2 88.4 86.3 88.9
63.5 91.4 63.5 91.4 59.6 90.3
78.1 89.0 77.4 87.0 76.8 85.1
(89.1, 0.67) (90.0, 0.67) (88.1, 0.69)

The PHD-based methods are applied to four xylanase data
sets, as described in the text. The top seven values in each cell
of the Table are as in Table 2; beneath these, in parentheses, are
Qtotal for PHD’s subset of high accuracy followed by the fraction
of residues in this subset.

columns again indicate a biasing effect that the
appropriate representation of common ancestry
would eradicate. Results of the three analyses are
identical for the PSEFL only data set, all sequence
comparisons being between identical sequences.
However, for all the other data sets it is clear that
the duplicate sequences, although they can contain
no new information, are having an effect on
secondary structure prediction. This is evident in
the prediction scores Q and R, which vary along
rows of Table 3.

Table 3 also records the results of PHD’s subset
predictions, which indicate residues where the
PHD method is particularly confident about its
predictions. Although there is no obvious trend in
the overall prediction accuracy (Qtotal) for those
predictions that PHD makes with this higher level
of confidence, we note that the number of residues
that are predicted with this confidence tends to
increase as exact copies of PSEFL are added to the
data set. The PHD program gives these sequences
undue influence; the copies are being treated by
PHD as if they contribute relevant additional
information. In contrast, our method completely
discounts the duplicates because they are perfectly
correlated with the original PSEFL sequence. The
PHD program lacks an explicit consideration of
phylogenetic relationships, as do many other
secondary structure prediction methods, and
therefore appropriate discounting of information is
not performed.
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Discussion

It has been suggested that incorporating evol-
utionary information into protein secondary struc-
ture prediction methods can improve their accuracy
by approximately 7.5% (Rost & Sander, 1994).
Comparisons within appropriate columns of
Tables 2 and 3 corroborate this suggestion. The
results shown in the first two columns of Table 2
illustrate how our HMM separates the contri-
butions to secondary structure prediction of
multiple homologous sequences and their evol-
utionary relatedness. These results show that the
explicit modelling of evolutionary relatedness can
add to the accuracy of predictions of secondary
structure, beyond the improvement generated
simply by using multiple sequences.

The results shown in the last two columns of
Table 2 and in Table 3 demonstrate further
deleterious effects of failing to model evolutionary
relationships in comparative sequence analyses.
Although the addition of closely related and
therefore very similar sequences should add little
or no information, these results indicate the actual
consequences for our HMM method, when
modified to neglect phylogeny, and for PHD. The
specific reasons for the results obtained are easily
explained for our method (above). The results from
PHD are harder to explain precisely, as its neural
network jury architecture acts rather like a ‘‘black
box’’. Nevertheless, the effects of neglecting
phylogeny are qualitatively the same; that is, a
decrease in ability to predict secondary structure
accurately. We expect this finding to apply to any
comparative sequence analysis that ignores the
evolutionary relationships between the sequences it
analyzes. The appropriate way to assess the
contributions of multiple homologous sequences is
via the phylogeny but no previous method employs
phylogenetic information directly. Because of this,
we believe that further improvements will be
obtained by modifying the best available secondary
structure prediction methods so that evolutionary
relationships among sequences are explicitly con-
sidered.

Although one important advantage of our HMM
method is its treatment of the correlations among
homologous sequences, our method has other
desirable properties. Sites in different secondary
structure categories may tend to experience both
different rates and different patterns of amino acid
replacement. Other secondary structure prediction
methods do not consider evolution and are
therefore apt to confound the information from the
rates and patterns of amino acid replacements.

We acknowledge that our HMM method is not at
this stage a serious contender amongst the best
secondary structure prediction methods. The best
methods consider features of data that our method
ignores. We certainly do not claim any superiority
over the highly successful PHD method, which we
have used here simply for illustrative purposes. We
chose the PHD program because it is one of the

most widely used methods, and is available freely
via electronic mail (Rost et al., 1994). For these
reasons, we have deliberately avoided any com-
parisons of secondary structure prediction accuracy
between our HMM method and PHD or other
prediction methods. If such a comparison is
required, the single ‘‘fair’’ comparison available
here is between the all 7, HMM cell of Table 2 and
the all 7, PHD cell of Table 3. We prefer to stress
the results of the experiments described above,
especially the second, as indicators of the improve-
ments that might be possible in many other
comparative sequence analysis methods if phyloge-
netic relationships were to be explicitly modelled.

We admit that our model is quite simplistic. It is
certainly not true that secondary structure lengths
follow geometric distributions, as our Markov
chain model implies. The three secondary structure
categories we have used are not all the possible
natural ones and the model does not utilize
information in alignment gaps. The amino acid
replacement model would undoubtedly be im-
proved by consideration of the three-dimensional
structure of proteins (e.g. distinguishing interior
and surface sites; see Koshi & Goldstein, 1995), and
this modification would surely permit more
information on secondary structure to be extracted
(Thompson & Goldstein, 1996a,b). Such improve-
ments are under consideration. However, our
model already appears to be better than current
evolutionary models used in phylogenetic analyses
for some proteins, and so may be expected to give
better estimates of phylogenetic relationships than
other current methods (Thorne et al., 1996).

Improvements to our HMM are expected to lead
to better secondary structure predictions, as might
some form of ‘‘filtering’’ to modify ‘‘nonsense’’
predictions (e.g. single residue a-helices or
b-sheets) that are currently permitted. Another
improvement could involve preliminary analysis to
classify proteins as all-a, all-b, a/b, etc. followed by
secondary structure prediction with HMMs opti-
mized for these classes of proteins (cf. Garnier et al.,
1978; Rost & Sander, 1993; Stultz et al., 1993).

Whether such modifications ever make our
method a reliable secondary structure prediction
tool, we stress that the proper treatment of
phylogenetic correlations within sequence align-
ments can improve methods that operate on
evolutionarily related molecular sequences. In
addition, explicit modelling permits insights be-
yond secondary structure prediction and may
generate the understanding to improve methods
further in a way that other approaches, for example
neural networks, cannot.

Acknowledgements
We thank Mark Bradburn and Burkhard Rost for

assistance with submitting alignments to the PHD e-mail
server, and Richard Goldstein for providing copies of



Evolutionary Trees in Comparative Sequence Analysis 207

papers in press. N.G. is supported by a Wellcome Trust
Fellowship in Biodiversity Research. J.L.T.’s research was
supported by NIH grant R01 GM 49654 and the Alfred
P. Sloan Foundation. D.T.J. is supported by a Royal
Society University Research Fellowship.

References
Altschul, S. F., Carroll, R. J. & Lipman, D. J. (1989).

Weights for data related by a tree. J. Mol. Biol. 207,
647–653.

Asai, K., Hayamizu, S. & Handa, K. (1993). Prediction of
protein secondary structure by the hidden Markov
model. CABIOS, 9, 141–146.

Baldi, P., Chauvin, Y., Hunkapiller, T. & McClure, M. A.
(1994). Hidden Markov models of biological primary
sequence information. Proc. Natl Acad. Sci. USA, 91,
1059–1063.

Benner, S. A. & Gerloff, D. (1991). Patterns of divergence
in homologous proteins as indicators of secondary
and tertiary structure: a prediction of the structure of
the catalytic domain of protein kinases. Advan. Enz.
Reg. 31, 121–181.

Benner, S. A., Badcoe, I., Cohen, M. A. & Gerloff, D. L.
(1994). Bona fide prediction of aspects of protein
configuration: assigning interior and surface
residues from patterns of variation and conservation
in homologous sequences. J. Mol. Biol. 235, 926–958.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer,
E. F., Brice, M. D., Rodgers, J. R., Kennard, O.,
Shimanouchi, T. & Tasumi, M. (1977). The protein
data bank: a computer-based archival file for
macromolecular structures. Eur. J. Biochem. 80,
319–324.

Bleasby, A. J. & Wootton, J. C. (1990). Construction of
validated, non-redundant composite protein se-
quence databases. Protein Eng. 3, 153–159.

Chothia, C. & Lesk, A. M. (1986). The relation between
the divergence of sequence and structure in proteins.
EMBO J. 5, 823–826.

Churchill, G. A. (1989). Stochastic models for hetero-
geneous DNA sequences. Bull. Math. Biol. 51, 79–94.

Crawford, I. P., Niermann, T. & Kirschner, K. (1987).
Prediction of secondary structure by evolutionary
comparison: application to the a-subunit of trypto-
phan synthase. Proteins: Struct. Funct. Genet. 2,
118–129.

Dayhoff, M. O., Eck, R. V. & Park, C. M. (1972). A model
of evolutionary change in proteins. In Atlas of Protein
Sequence and Structure (Dayhoff, M. O., ed.),
pp. 89–99, National Biomedical Research Foun-
dation, Washington DC.

Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978).
A model of evolutionary change in proteins. In Atlas
of Protein Sequence and Structure (Dayhoff, M. O., ed.),
pp. 345–352, National Biomedical Research Foun-
dation, Washington DC.

Devereux, J., Haeberli, P. & Smithies, O. (1984). A
comprehensive set of sequence analysis programs
for the VAX. Nucl. Acids Res. 12, 387–395.

Felsenstein, J. (1981). Evolutionary trees from DNA
sequences: a maximum likelihood approach. J. Mol.
Evol. 17, 368–376.

Felsenstein, J. (1985). Phylogenies and the comparative
method. Am. Nat. 125, 1–15.

Felsenstein, J. (1992). Estimating effective population size
from samples of sequences: inefficiency of pairwise
and segregating sites as compared to phylogenetic
estimates. Gen. Res. 59, 139–147.

Felsenstein, J. (1995). PHYLIP (Phylogenetic Inference
Package), Version 3.57c, Department of Genetics,
University of Washington, Seattle.

Felsenstein, J. & Churchill, G. A. (1996). A hidden Markov
model approach to variation among sites in rate of
evolution. Mol. Biol. Evol. 13, 93–104.

Flores, T. P., Orengo, C. A., Moss, D. S. & Thornton, J. M.
(1993). Comparison of conformational characteristics
in structurally similar protein pairs. Protein Sci. 2,
1811–1826.

Garnier, J., Osguthorpe, D. J. & Robson, B. (1978).
Analysis of the accuracy and implications of simple
methods for predicting the secondary structure of
globular proteins. J. Mol. Biol. 120, 97–120.

Gerstein, M., Sonnhammer, E. L. L. & Chothia, C. (1994).
Volume changes in protein evolution. J. Mol. Biol.
236, 1067–1078.

Gotoh, O. (1982). An improved algorithm for matching
biological sequences. J. Mol. Biol. 162, 705–708.

Harris, G. W., Jenkins, J. A., Connerton, I., Cummings, N.,
Lo Leggio, L., Scott, M., Hazlewood, G. P., Laurie,
J. I., Gilbert, H. J. & Pickersgill, R. W. (1994).
Structure of the catalytic core of the family F
xylanase from Pseudomonas fluorescens and identifi-
cation of the xylopentaose-binding sites. Structure, 2,
1107–1116.

Harvey, P. H. & Pagel, M. D. (1991). The Comparative
Method in Evolutionary Biology, Oxford University
Press, Oxford.

Harvey, P. H. & Purvis, A. (1991). Comparative methods
for explaining adaptations. Nature, 351, 619–624.

Hein, J. (1990). A unified approach to alignment and
phylogenies. Methods Enzymol. 183, 626–645.

Jenny, T. F. & Benner, S. A. (1994). Evaluating predictions
of secondary structure in proteins. Biochem. Biophys.
Res. Commun. 200, 149–155.

Jones, D. T., Taylor, W. R. & Thornton, J. M. (1992). The
rapid generation of mutation data matrices from
protein sequences. CABIOS, 8, 275–282.

Jukes, T. H. & Cantor, C. R. (1969). Evolution of protein
molecules. In Mammalian Protein Metabolism (Munro,
H. N., ed.), pp. 21–132, Academic Press, New York.

Kabsch, W. & Sander, C. (1983). Dictionary of protein
secondary structure: pattern recognition of hydrogen
bonded and geometrical features. Biopolymers, 22,
2577–2637.

Kishino, H., Miyata, T. & Hasegawa, M. (1990).
Maximum likelihood inference of protein phylogeny
and the origin of chloroplasts. J. Mol. Evol. 31,
151–160.

Koshi, J. M. & Goldstein, R. A. (1995). Context-dependent
optimal substitution matrices. Protein Eng. 8,
641–645.

Krogh, A., Brown, M., Mian, I. S., Sjölander, K. &
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